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CLASS OF SELF-SIMILAR SOLUTIONS FOR A HIGH-TEMPERATURE 

AXISYMMETRIC JET 

A. A. Bobnev UDC 532.526 

The most simple and rigorous results in the investigation of nonisothermal jet flows 
of a compressible gas can be obtained by utilizing the Dorodnitsyn transformation [i]. How- 
ever, this method is suitable only for plane (or nearly plane) gas flows with a linear depen- 
dence of the heat conduction and dynamic viscosity on temperature; the transition here from 
Dorodnitsyn to physical variables is difficult. In the case of an axisymmetric jet issuing 
from a point source for a domain where the temperature on the axis is considerably higher 
than the temperature at infinity, by using the idea of the existence of a separating layer 
[2], a self-similar solution can be constructed for a power-law dependence of the heat conduc- 
tion and viscosity on the temperature, where it is possible to go from the initial two-param- 
eter problem (the Prandtl number, the exponent) to a one-parameter problem. 

i. We write the problem describing the emergence of a nonisothermal jet from a cylin- 
drical orifice in the boundary-layer approximation in the dimensionless form 

I [ 0o] o 
r~ (T)  = p  VTr + w o z  / ( 1 . 1 )  r Or 7r 

i 0 o 
r Or ( rpv)+~Tz  (pw)=O, ,  p T = l ,  

1 o r~,(r)-~r = P r p  v ~ 7 + w ~ f  �9 
r Or 

aw or O for �9 r = O; 
v Or Or ( i .2 )  

T ~ e , w ~ O  for r-~oo, (1.3) 
where r, zR are cylindrical coordinates (r, z are internal coordinates in an asymptotic expan- 
sion in the small parameter R-i), R = /pmIlm/2V/~m is a certain analog of the Reynolds number, 
vR -i, w - r, z are velocity components; Pr = Cpm~m/Xm is the Prandtl number; and c is the 
value of the temperature at infinity. The notation of the remaining quantities is standard. 
The scales Tm, Pm, cpm, Dm, Xm (the scale quantities are marked with the subscript m), as well 
as the total momentum scale Iim are the enthalpy flux I2m defined by the formulas 
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n T79 ro 7 ~ i I1~ = anpm~ ~b~ ~ pw'rdr, [2m = 2ac~mpmTmVmL~ pw (T --  e) rdr 
o o 

are considered given to make the quantities dimensionless. Selected as velocity V m and Lm 
scales are 

Vm = %mT~IlmlI2~,  L~  = (12mlcpmTm)/~ 2 ~ p j l ~ .  

It was assumed in (i.i) that the specific heat is a constant. The initial condition for z = 
z 0 should be substituted for system (i.i). However, within the framework of this work only 
self-similar solutions will be considered, so we formulate the momentum and enthalpy flux 
conservation conditions to close the problem (1.1)-(1.3): 

y pw~rdr = 1, ~ pw (T --  e) rdr = t .  ( 1 . 4 )  
o o 

We consider the problem (1.1)-(1.4) for g + 0. For this case an asymptotic expansion 
in the small parameter E, suitable near the boundary r = 0 (we later call this expansion the 
expansion for the hot boundary layer), can be constructed. Following [2], we assume that 
these expansions will not be suitable near the surface where the separating layer is local- 
ized, i.e., the domain of suitability of the expansion is in the interval 0 ~ r < r0(z), 
where r = r0(z) is the interface on which the temperature of the hot boundary layer equals 
zero in the zeroth approximation. Within the framework of this work we shall not construct 
the solution for the separating layer; we just note that the reasons for origination of this 
domain of nonuniformity and the methodology of constructing the solution in the separating 
layer are considered in [2]. From the physical viewpoint, a thin separating layer (compared 
with the boundary-layer thickness) separates the high-temperature compressible gas flow 
domain from the low-temperature incompressible gas flow domain with the constant temperature. 

In the zeroth approximation in ~, the problem for the hot layer is described by system 
(i.i), boundary conditions (1.2), and the integral conditions which are now written in the 
form 

%(z) to(Z) 

y pw~rdr~- t ,  ~ w r d r = l .  ( 1 . 5 )  
0 O 

Conservation: conditions (1.5) can be obtained just by assuming the existence of these inte- 
grals. The problem (I.i), (1.2), (1.5) allows seif-similar solution if 

where ~ is a given constant. It should be kept in mind here and below that the result is 
considered real and positive when raising a positive number to a noninteger power. Then, 
setting 

w (r~ z) = z~wu (x), u = z%f (xlt T : z=r0(x), r = xz~r ( 1 .7  ) 

where 

c% = c~ r = - - i / ( i  + y), =o = - - (3  + 2?)/[2 0 + ?)1, e~=l / [2( l  + y)]~ 

we obtain from (i.i), (1.2), (1.5), 

i t 
7 = -6 [.(u' + ~ ( ~  - (zxu')], 

o, § 

(1.8) 

(1.9) 

]= u' =0' ----0 for x=0; 

0 o 

( i . i 0 )  

(i.li) 
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where the prime denotes the derivative with respect to x; x 0 is the point of separation 

[8(x 0) = 0] if it exists, otherwise x 0 § ~. Let us note that ~ < -i for temperature and 
the longitudinal velocity on the axis grow downstream [see (1.8)]. Physically such a situa- 
tion apparently cannot occur; consequently, it should be kept in mind that later only the 
case 

~ > - t  (1.12) 

will be considered. It can generally be assumed for laminar jets that the viscosity and heat 
conduction grow as the temperature rises, i.e., ~ > 0; however, the description of certain 
turbulent flows can be reduced to laminar models with ~ < 0. 

In connection with the fact that the problem (1.9), (I.i0) is invariant to transforma- 
tion 

C-I/2C(1+~)/2x /_._>.G1/2C~+~)/2/, 
u " ~ C l u  , O " - ~ C z O ,  x - ' +  1 2 , ~ ( 1 . 1 3 )  

we use the conditions 

u = t ,  0 = t ~ r  x = O  ( 1 . 1 4 )  

a s  c l o s i n g  f o r  t h e  p r o b l e m  ( 1 . 9 ) ,  ( 1 . 1 0 ) .  S o l v i n g  t h e  p r o b l e m  ( 1 . 9 ) ,  ( 1 . 1 0 ) ,  ( 1 . 1 4 ) ,  and  
using the properties (i.13), the constants CI, C 2 that satisfy the normalization conditions 
(i.ii) can be determined. Consequently, we shall later investigate problem (1.9), (i.i0), 
(1.14). 

2. By using the transformation 

s = P r ( l - - a x u ) ~  (2.1) 

its properties and the properties of the functions 8, u following from problem (1.9), (i.i0), 
(1.14), 

s = OVO'~ u = 01/Pr~ ( 2 . 2 )  

we reduce this latter problem to the form 

~ (  ' = P r  - 0 1 / p r  O' xOVO ' )  0 v - I 0 ' 2 +  ~-  ~ O = l ,  = ' 0  ~r  r = O .  ( 2 . 3 )  

Problem (2.3) has certain simple solutions. Thus, for ~ = 0, Eq. (2.3) is related to 
the known Emden-Fowler equation [3], and the solution of (2.3) is 

i Pr \-2Pr~l-Pr) 

It can be obtained from the condition for the existence of integrals [conditions for the 
existence of self-similar solutions in the form (1.7) and (1.8)] that the solution (2.4) is 
acceptable for Pr < 3. For 0 < Pr ~ i, the solution (2.4) is suitable in a semiinfinite in- 
terval for the variable x (0 ~ x < ~), i.e., no separating layer originates here. For i < 
Pr < 3, the solution (2.4) is suitable in the interval 0 g x < x 0 and the separating layer 
is localized near the surface (point) of separation x 0 = /8/(Pr - i). 

For Pr = i, the solution of problem (2.3) is 

l/? 

This solution is applicable, if 7 > 0, for 0 ~ x < x 0 = 2/(1 + ~)/~, or if ~ < 0, for 
0 5 x < ~. The conditions of existence of the integrals lead to a bound on y not exceeding 
(1.12). 

By introducing the new variables 

= x V P r ( - - a r )  lvl, �9 = O r 

we c o n v e r t  p r o b l e m  ( 2 . 3 )  t o  t h e  f o r m  

n d~] ~ ~1 ] + sign (?) x ~ = O, �9 = l ,  ~1 0 for ~] = Oa 

(2.6) 

(2.7) 

492 



where B = (i - Pr)/(~Pr). Therefore, the initial fifth-order two-parameter problera (7~ Pr) 
has successfully been converted to two [sign (~) = • one-parameter second-order problems. 
By solving (2.7) and using (2.6), (2.2), (2.1), self-similar functions u, 0, f of the self- 
similar variable x can be determined, and then, if necessary, the solution obtained can be 
normalized by using (1.13) and (i.ii)~ 

The problem (2.7) also has certain simple solutions~ For $ = 0 (Pr = I) the solution 
has already been obtained [see (2.5)]. For ~ = 1 the solution of (2.7) is 

: 4 (  V ~ign (V)~), ( 2 . 8 )  

where J0 is the Bessel function. For ~ > 0 the solution (2.8) is suitable in the :interval 
0 ~ q < kl, where k i is the least positive root of the equation J0(kn) = O. Existence condi- 
tions for the integrals (i.ii) for ~ = I and y > 0 (Pr < i) impose no constraints on the 
acceptability of solution (2.8). For B = I and ~ < 0 (Pr > i) solution (2.8) is suitable 
in the semiinfinite interval 0 ~ q < ~, and the constraint Pr < 2 follows from the existence 
condition for the integrals (i.ii). 

The curves �9 = z(q) for 7 > 0 and different values of B as obtained by the ~unge-Kutta 
numerical method are constructed in Fig. i. Let us note that for any values of ~ (-~ < B < ~) 
the solutions of problem (2.7) are suitable in a bounded interval of the variable q (0 ~ q < 
q0). The constraints imposed on the solution of problem (2.7) can be estimated from the be- 
havior of the function �9 (or ~-l for ~ < O) in the neighborhood of its zeroes, since pre- 
cisely this determines the existence of the integrals (i.ii). Without performing a detailed 
analysis, we note the final formulas describing the behavior of the function �9 (or T -I for 
< O) in the neighborhood of its zeros and the constraints following from the existence con- 

ditions for integrals (i. Ii). Thus, for ~ > 0 and $ > -i [(i - 7)Pr < i], in the neighbor- 
hood of zero 

2 
= V ~-~ (~0 - n) + o ((~0 _ ~)~+~ )~ 

from which the constraint (i - ~)Pr < 2 follows, which is not stronger than the condition 
B >-i [(i - y)Pr < i]. For y > 0 and ~ < -i [(I - x)Pr > i] in the neighborhood of the sepa- 
ration point Do the function x will behave as a power law 

from which it is possible to obtain 

(1 --  ~)Pr < 3. ( 2 . 9 )  

It follows from condition (2.9) and the behavior of the function ~ > -i that the solutions 
of problem (2.7) are suitable for any values of Pr if 7 ~ i. For y > 0 and $ = -i (Pr > I) 
and asymptotic estimate yields in the neighborhood of the separation point 

" (i + 0 (1~-1 ~))~ ~~ - ~ = V ~  

from which it follows that the integrals (i.ii) exist for any values of y (or Pr). 

Solutions of the problem (2.7) are presented in Fig. 2 for ~ < 0 and different values 
of the parameter ~. For B > i [(I + 7)Pr > I] and y < 0 the solution of problem (2.7) for 
is suitable in a bounded domain of the variable n (0 5 q < q0) and will behave in the neigh- 
borhood of a zero of the function x-i as 

r = , ,. V ~ - i  L(~0 - + o ((~0 - .  

while the existence conditions for the integrals ( 1 . 1 1 )  will result in the constraint (2.9). 
For 7 < 0 and -i < ~ < I the solution for T is suitable in the semiinfinite interval 0 s q < 
~, while for q + ~ the function ~ behaves as 

(_~__2 ~ T ? ] )  2/(1-~) 0 (~--(2+2[~)I(1--~)) = W ~ - ~  + o (~-~)  + . 
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Then for 7 < 0 and -i < $ < i it is possible to obtain Pr < -1/7 from the existence conditions 
for the integrals (i.ii). For ~ > 1 and D + ~ the function T - in n and the integrals (i.ii) 
do not exist. Therefore, the self-similar representation (1.7), (1.8) is not suitable for 

< 0 and ~ <-i. 

Let us note that the existence conditions for the integrals (I.ii) allow infinite deriv- 
atives in D for the longitudinal velocity or temperature in the neighborhood of the separation 
point. For instance, for Pr = 2 and 7 = 3/2 near the point N = N0, u - (Do - q)z/3, 8 % (D0 - 

3.  Let  us i n v e s t i g a t e  the  s o l u t i o n  of  problem ( 2 . 7 )  in  t he  case  of  ~, which i s  l a r g e  in  
a b s o l u t e  v a l u e .  The t e r m i n o l o g y  and ideas  ( p a r t i c u l a r l y  t he  most power fu l  p e r t u r b a t i o n  t h e o r y  
method, in our o p i n i o n ,  merger  a t  an i n t e r m e d i a t e  l i m i t )  of  merging a s y m p t o t i c  expans ions  
w i l l  be used in  c o n s t r u c t i n g  t h e  s o l u t i o n  [4 ] .  I t  i s  e x p e d i e n t  to  i n t r o d u c e  t he  new f u n c t i o n  

g = ~-x 

to convert the problem (2.7) to the form 

( 3 . 1 )  

d( t (dg   ign( ) o, (3.2) + = 

dg g=1, ~=D mr ~=0, 

where sz = i/($ - i). 

We consider the problem (3.2) first in the case 0 < e I << I. We formulate the internal 

limit process in the form 

el + 0  (~-+oo),  ~ = ~ / ~  isfixed. ( 3 . 3 )  

We the n  c o n s t r u c t  t h e  i n t e r n a l  expans ion  of  t h e  s o l u t i o n  of  problem ( 3 . 2 )  as 

g(~ el) = ~(~) ~-V,(81)gl(~) ~- ...vn(el)gn(~) + . . . ( n  = i ,  2 . . . .  ) ,  ( 3 . 4 )  

where ~n(~z)  i s  a c e r t a i n  a s y m p t o t i c  sequence .  S u b s t i t u t i n g  ( 3 . 4 )  i n t o  problem ( 3 . 2 ) ,  and 
keep ing  in  mind t he  d e f i n i t i o n  of  t h e  i n t e r n a l  l i m i t  ( 3 . 3 ) ,  we o b t a i n  

t d [ dgo% i (dgol 2 z ago 
~ g d ~ / ~ T ) - - ~ k d ~ j  + g 0 = 0 ,  g 0 = i ~  ~ = 0  ~ ~ = 0 .  ( 3 . 5 )  

which i s  r e l a t e d  t o  t he  Emden-Fowler e q u a t i o n  [3 ] .  The s o l u t i o n  of  ( 3 . 5 )  i s  

= (l --4- ~/8) -~. ( 3 . 6 )  

The solution of problem (3.2) in form (3.6) is suitable with confidence only for arbitrarily 
small N since it is evident from the above that for ~ > 0 and $ > 0 a separation point exists 
(a zero of the function T). Therefore, the suitability of the expansion (3.5) in the neighbor- 
hood of an n not arbitrarily small [i.e., in the case when D * 0 not as rapidly as at the 
internal limit (3.3)] is already questionable. Consequently, we formulate the external limit 

process 
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= ~/~($i) is fixed, ~(gl)/V~--~'oo for gl--> 0. (3.7) 

Here ~(r characterizes the scale of the variable q at the external limit, but the function 
6(~i) is still not defined. 

It is seen from problem (2.7) that as ~ + ~ and 0 < �9 < i (the latter follows from tem- 
perature positivity and monotoneity considerations), its solution will behave as 

= A q- B i n  ~1 -~ TST (l~-!) 

to an error of transcendentally small terms for at least large or not too small values of 
q, where A, B are constants independent of q. Consequently, keeping in mind (3.1) and the 
definition of the parameter e I it can be assumed that the expansion for the function g at 
the external limit (3.7) has the form 

g (~, ~,)-- [47o (~) + .  A~7~ (~)  + . .  ] { l  + [Bo~o (~)  + . .  B ~  (~)  + . . .  1 ~n ~}~/~ . . . .  , (3.8) 

where An, Bn are constants independent of r v~(~), ~(~) are asymptotic sequences. With- 
out limiting the generality of the external limit process and of the expansion (3.7) itself, 
it was assumed in writing (3.8) that 

8(el) = I.  ( 3 . 9 )  

We merge the expansions (3.4) and (3.8) at a limit intermediate between the limits (3.3) 
and (3.7). We formulate the intermediate limit process in the form 

M-+O, M/V~I--~O0, ~m = ~IM is fixed for ~i-+0. (3.10) 

Then, by merging (3.4) and (3.8) at the limit (3.10), we have 

1 + s~ / + , , ~ ( ~ O a ( n , , , 4 Y ~ )  + = (~) + . . . l  + I~oTo(~O + . . .~ ~ , ,~ ,~  , 

from which we successively obtain 

~ o = e l ,  v~=e~, B o = _ _ 4 ,  A o = 6 4  

and in  a z e r o t h  a p p r o x i m a t i o n  in  s l  a t  t h e  e x t e r n a l  l i m i t  ( 3 . 7 ) ,  ( 3 . 9 )  

.1/~i 
g = 64ei (i --  481 In ~) ,~ 

i.e., the separating layer occurs near the point q = q0 = exp (i/4e I) here. 

The solution of problem (3.2) is constructed in an analogous manner in the case sign 
(7) = -i as ~ +-~. A uniform approximation can be obtained by combining solutions suitable 
at the internal and external limits and subtracting their common part. Then in the case 
7~ > 0 for ~ + • (e I ~ • 

( g = i § ~ /  + 64e~ (I -- 4s~ In ~]) I/sI ~12 

will be a uniformly suitable approximation in e I and q for the problem (3.2). 

For 7~ < 0 and 8 + • ~ • an expansion of the form (3.4) will be a limit process 
in the form 

will be uniformly suitable for problem (3.2). In this case solution of (3.2) in a zeroth 
approximation in ~i has the form 

II 2 ~ -2 

The separating layer here evidently occurs for q = q0 = J8~giI. 

In conclusion, the author is deeply grateful to V. V. Pukhnachev for discussing the re- 
sults of the research. 
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COATING OF A NON-NEWTONIAN FLUID ONTO A MOVING SURFACE 

V. I. Baikov, Z. P. Shul'man, and K. Engel'gardt UDC 532.51 

The application of a coating of non-Newtonian fluids to a moving surface was considered 
in [1-4]. These studies are based on the approach proposed in [5, 6], which is restricted 
by the requirement that the thickness h0 of the coated film be small as compared with the 
capillary constant (o/pg) 1/2 (p is the density, g the free-fall acceleration, and o the sur- 
face tension). Experimental studies of fluid coating [i, 7] have revealed substantial dif- 
ferences between the theoretical and experimental data. Thus at present we lack a theory 
that satisfactorily describes the coating of non-Newtonian fluids. In this article such a 
theory is developed for fluids with nonlinear viscosity. 

i. Let us consider the process of coating a liquid onto a vertical surface moving at 
a constant speed (Fig. i). Because of the action of gravity, the withdrawn plate entrains 
only part of the liquid it sets in motion. Accordingly, on the free surface there is a stag- 
nation line (perpendicular to the plane of the drawing) where the velocity isequal to zero 
and the flow direction branches [8]. The streamlines passing through the stagnation line 
separate the wall zone of liquid entrained by the wall from that remaining in the bath. 

We take the stagnation line as the origin and direct the x axis vertically upward in 
the direction of motion of the surface, and the y axis at right angles to the latter. The 
flow region bounded below by a plane perpendicular to the wall and passing through the stag- 
nation line and tending upward to the constant thickness h 0 we will call the dynamic menis- 
cus zone. Clearly, the length L of the dynamic meniscus zone considerably exceeds its width 
h0; this naturally gives rise to the small parameter e = h0/L << I. Consequently, the varia- 
tion of the characteristics along the x axis is much weaker than in the transverse y direc- 
tion, i.e., the derivatives with respect to y are much greater than those with respect to 
x. Making the appropriate estimates [9] in the equations of motion and the boundary conditions, 
in the region of the dynamic meniscus we obtain 

a~/av § p g  - -  ap/ax = o, ap/ay = o ;  ( 1 . 1 )  

u =  Uwhen g = O ,  ~ = O w h e n g = h ;  (1 .2 )  

P - -  Po  = ~ ~  g = h .  
(1.3) 

h 

We represent the continuity equation in integral form: Q = ~udy = const. Here �9 is the 
0 

shear stress due to friction; h is the coordinate of the free surface of the liquid; p is 
the pressure in the liquid; u is the x component of the velocity vector; P0 = const is the 
pressure in the gas; and Q is the rate of flow of the liquid in the film. 

Integrating (i.i) with respect to y and using (1.2) and (1.3), we find 
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